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ABSTRACT 

Equivalences between the condition I PT~(x)l_-< K(n 1X/1-- x 2 + 1/n2)kn ~, 
where Pn(x) is the best n-th degree polynomial approximation to f(x), and the 
Peetre interpolation space between C[ -1 ,1 ]  and the space (1 -  X2)kf(2k)(X) 
C[-1 ,1 ]  is established. A similar result is shown for E~(f)= 
infpo I l l -  P. IIct-l.lj. Rates other than n -~ are also discussed. 

I. Introduction 

Derivatives of polynomials of best approximation were recently investigated 

by M. Hasson [2] and D. Leviatan [4]. The result obtained [4, Theorem 4] for Pn 

satisfying Ill - P, II = E, (f) =- i n f o ~ .  Ill - Q II in the C [ -  1, 1] norm is 

(1.1) [P~)(X)I<--_KIA.(x)I-k~or(f, 1/n) for k =>r, 

where A, (x) ---- n - ~ / 1  - x 2 + n -2 and tot (f, h) is the r modulus of continuity, that 

is o~,(f,h)=supo~,~h{raTf(x)p; [x-½rh, x +~rh]C[-1 ,1]} ,  

A,,f(x) =-- f (x  + h/2) - f (x  - h/2) and a'~f(x) -- a,, (A'~-lf(x)). 

While it is clear from the term An(x) -k that some care was taken to treat the 

behaviour near +-1, no such scrutiny is evident in the term o~,(f,1/n). It is 

known, and will be clear from this paper as well, that the polynomial of best 

approximation is not as sensitive to smoothness near -+ 1 as it is to smoothness 

inside the interval [ -  1 + &l - ~], for instance. 

We will obtain the estimate 

(1.2) I PT'(x)l--< Kla.(x)l-%*ff,1/n) 
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where 

(1.3) to*(f, h) = sup {IA',,(~)[(x)l;[x - rt?(x)/2,x + rty(x)]2] C [ -  1,1]} 
O<t<h 

and y(x )  =- X/1 - x 2. If we examine the functions f ( x )  = (1 - x~) ~/2, a < 1, for 

instance, we will find that D. Leviatan's estimate yields IP?~(x)l_--- 
K(A,(x) ) -kn  -~"2 and our estimate tP?~(x)l ~ K(A.(x))-kn -" (both for k => 1). 

The expression to*([,h) was studied in detail as the K-functional of an 

interpolation space, together with other related K-functionals, in [1, section 3]. 

In contrast, one has II/-e= (x)ll = Kto*,ff, 1/n). This latter type of result for Lp, 

1 =< p < oo (which is the more difficult case), was announced by V. Totik in [8]. V. 

Totik has an additional nontrivial term in the definition of to *, which is the result 

of treating the,Lp case (see also [1]); for L® no such term is needed. Moreover, 

I l l -  e.(x)llc <- Kto*([, 1/n) follows from a result of K. Ivanov [3] relating to the 

moduli of continuity ~-~(/,A.(x))p,p for p ' =  1, p = oo elaborated on by many 

Bulgarian mathematicians in dozens of papers and given by 

(1.4) = la~t(~)l.'d,, / ]~ 
' IltZA.(x)J-..~x~ 

where the L~ norm should be taken in [a.,/3.], where a. and/3, are the solutions 
of x -+½rA.(x) = _+ 1 inside [ -  1,1]. The results presented here are in a sense 
best possible. That is, if [Pt.')(x)l--< K(A.(x))- '4~(n) where ~b(n) is decreasing, 

~b (n) = o (1), and satisfies some additional conditions, then to * (f, l / n )  <= Mqb (n). 
This is the analogue to the Sunouchi-Zamanski theorem, see [6] and [9], that 
states (for Lp) that for T., the trigonometric polynomial of best approximation, 

( r )  < r - o ,  
II T. II = Mn for a < r  if and only if f E Lip* a. (The result is valid for a r 
and for 4~(n)~ n-L) 

In fact, this inverse theorem is an easy corollary of the asymptotic behaviour 

of the derivatives of the polynomials of best approximation. Hasson [2] brought 

an example to show that lit - e. II- 1/n and I P, ( x ) J -  K log n occur for the same 

f (x) .  From the present study this is shown to be natural, as IIf- e.  II = Kn-" is 
equivalent to to *,+l(f, 1/n) <= Mn-" and I P~(x)l <-_ K(A .  (x))- 'n-'  is equivalent to 

to*,(f,1/n)<= Mn-" and even in the interval [ -  1 + 8,1 - 6] one should expect a 

logarithmic term (using a Marchaud-type inequality). 

2. Derivatives of P., the polynomial of best approximation 

For E.(f)  given by E.(f)--infp~,.llf-Pilot-, , ,]  we have: 
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THEOREM 2,1. I[ [or some integer r and decreasing sequence ok(n), 

I 

2k'd,(2k)<=M2"dp(2 ') and En(f)<=d,(n), 
~ = 0  

then for P,, the polynomial satisfying II/- Po II = E=(f), 

( 0  < (2.1) IP,  (x)[_- M~(an(x))-r4~(n). 

In particular, if for some r, 

1 

~o 2~'E2' q) <= M2'rZ2' (y)' 

then 

(2.2) I P~'(x)] --< M,(A. (x ) ) - 'G  (f). 

REMARK. The use of $ ( n )  other than E . ( f )  will prove useful later. The 

second statement of the theorem is just a special case which for the time being is 

the most important. It should be noted that if E, (f) = n-r, the result above does 

not imply (1.2) and Theorem 2.1 will be used as a step in proving (1.2). 

PROOF. For 2 k < n < 2 k+~ we write 

k 

P.(x)- e,(x) = ~ (P2,.,(x)- e2,(x))+ (Po(x)- P~.~(x)). 

We have P~)(x) = e~(x )  - P~°(x) for r > 1, while for r = 1, Pl(x) is bounded by 

cull  ( c  fixed and independent of f), and since P' (x ) -P~(x )  would tend to 
infinity under the condition of our theorem, P~(x) may be neglected. We can 

now write 

llP2,+,(x)- P2,(x)l t < E2,+,(f)+ E2, (f) < 2~b (2') and IlP.(x)- Pz~÷'(x)lf-~ 2~b (n). 

We will now need the following Lemma, which is probably known but, as I 

cannot find a reference (for r > I), I will include a short proof after proving 

Theorem 2.1. 

LEMMA 2.2. For Qm, a polynomial of degree m, 

(2.3) I Q~,'(x)[--- M, o,  U- M, II Om II 

where M, is independent of Qm, m and x. 

Using Lemma 2.2, 
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/ 1 \ r  I 'k+l  ] 
1 l+1 r I 4- IP:'(x)I<-_M~(7(-~) 1 ~ ( 2  )24~(2 ) n'2~b(n) } 

<- M,[ 1 ~  '~ ¢{2M2'(k +2)~b (2 TM) + 2n 'th (n)} 
- \ v ( x ) )  

< 1 

Using the technique of Theorem 6 in [5, p. 41] on P~), which is a polynomial of 

degree n - r, we have (for n > 2r but otherwise the result is trivial) 

I P~)(x)I < gln~(n)('X/1 - x 2 ~  - 1/n)-'. 

PROOF OF LEMMA 2.2. For r = 1, (2.3) is well-known [5, Th. 3, p. 39]. Assume 

by induction that it is known for r = k. Using the estimate 

-1-1going  l+lxol IO~'(x)l~M, IIO~IF f o r l x 0 ] < l  and 2 = = 2 ' 

we have 

i, k,x ( m )k 
Q,, ( )lh(-~-,xoj)/2,(l+l=ol)/2j ~ Mk V1 - ((I xol + 1)/2) 2 II Qm {Icl-l,u. 

We now use the Lemma for r - - 1  where [ - 1 , 1 ]  is replaced by the interval 
( -  1 - I  Xol)/2 _--- x _--- (1 + Ixol)/2 and obtain 

( m o ) 
IO~+"(x)I<=M~M, Vl_((lXoi+l)/2)2 V((lXo[+l)/N)2_x ~ 110,,11. 

For x = Xo the above yields 

[Q~+l)(Xo)[<=MkM,(~xo))~[ 2m ~ [ m ~k+~ \V-~o)jIIOll<M~M,2~+'\V-~o)) Ilom II. 

This being valid for all Xo implies our result. 

Actually we proved also the following result which will be useful later. 

LEMMA 2.3. Suppose for a polynomial O,, of degree m, ]O, , (x) l=  < 
M/(1 - x2) '/2, then I O ' (x ) l  ~ M~m/(1 - x 2 )  (/+1)/2 

As a corollary of Theorem 2.1 we can deduce the inverse theorem for 

polynomials of best approximation. 
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THEOREM 2.4. Suppose E,(f)<= Kck(n), E~,=o2~('+l)~b(2k) < M2"'+l)th(2 ~) and 

ok(n) is decreasing, then o9*+df,1/n)< Klck(n). 

PROOF. Using Theorem 2.1, we have IPT"(x)l--< We can 

now write, for x -+½(r + 1)ty(x) E [ -  1,1], 

r+l r+l _~_ r+l IA,,,x,P,(x)I<=T+~E,(D + ~',C~)'Ar+~ O,(X)I. 

Using Taylor's formula with integral remainder and the estimate above of 

Ip71'( )1, we obtain, for x +--½(r + 1 ) t r ( x ) E [ - 1 , 1 ] ,  

II; L ( t , x ) = l  '+~ A,r(x)P,(x)[ _-< C1 s u p  (U -- X + aty(x))  [PTX)(u)ldu . 
[al~=(r+l)12 -aO'(x) 

For - 1 + (r + 1)ty(x) <= x <-_ 1 - (r + 1)ty(x) and u between x and x - a ty(x)  

where I a ] _-< (r + 1)/2, we have C2A, (x) =< A, (u) < C3A, (x) where C2 and 673 do 

not depend on x and therefore, for those x and for t <= 1/n, 

I .( t ,x ) <= C4(An(x)) ' -%(n  )(at)'+~ 3,(x )'+m <= C56(n). 

For x <- - 1 + (r + 1)ty(x) or x _-> 1 - (r + 1)ty(x) and t <= l/n we use (A.(x)) -1 < 

n2 and obtain 

I ,( t ,x  ) <= C6(n2)'+~qb(n )(at ) '+i(X/1- x2)'+~ <= C7~b(n), 

which together with earilier estimates concludes the proof. 

We also have the following result. 

COROLLARY 2.5. Suppose E,(f)<=Kcb(n), c~(n) is decreasing and 
v' "k'-~'~k~<M2~'~b(2'), then * < o9 r(f, l/n )= KJp(n ). -~k=0 A, I D ~  1 =  

PROOF. We may use the same proof, as we can derive from Theorem 2.1 the 

estimate I The result also follows from the relation 

between og*([,1/n) and og*+df,1/n), but it seems in the present context more 

natural to use the estimate on tPP(x)l. 

3. The best polynomial approximation 

A simple estimate for E,  (f) is given in the following theorem. 

THEOREM 3.1. For f E C[ -  1,1] and E . 0  r) = s u p e ~ . l l f -  P[[, we have 

(3.1) E, (f) ~ Ko9 *(f, l /n).  

REMARK. In [8], V. Totik states (without proof) for E. ( f ,p ) - -  
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s u p ~ . l l f -  P[I~ that 

It(sup, II + sup ll AZf t1 .) • 

For p = oo one observes that the second term in the definition of to~(/, 1/n)p is 
r < dropped. Obviously, the case p = oo is the easiest and (3.1) follows to,(/, 1/n)= 

Kato *,(/, I/n). Moreover, it was shown by K. Ivanov (see [3]) in a series of papers 

using the moduli of continuity r,(/,t)p,p investigated by numerous Bulgarian 

mathematicians that among other things E. (/) <_- K~, (/, A. (x))l,® where rr (f, t)p,p 

is given by (1.4) and it is not difficult to show that 

~-,(t, A. (x))L~ =< z,(/,A. (x))~ ® <= gto *,(/, 1/n). 

The above is valid, although the L= norm for r, (/, A, (x ))p, = is taken in [a.,/3.] 

where a. , /3,  are the solutions of x --+ ½ rA. (x) = -+ 1 and in the present discussion 

the L® norm is taken in [y , ,6 . ]  where y,, 6. are solutions x ~-½rT(x)= 7 1 of, 
and obviously [y, ,6.]  contains [a.,/3,]. The well-known estimates on 

If(x)-eo(x)l (see [7] and [5]) for some P.(x) treat the case of uniform 

smoothness and non-uniform convergence of I f (x ) -  P, (x)]. (This is in contrast 

to uniform convergence and non-uniform smoothness here.) In that case P, (x) is 

not the best polynomial approximation to f(x) in C [ -  1, 1]. For completeness 
we will give a straightforward proof of the Ivanov-Totik result for to*(/, 1/n). 
This proof will not depend on the properties of zk (/, A, (x))p,,p ; in fact we will not 

get involved with those moduli. 

For the proof of Theorem 3.1 as well as for later theorems we will need the 
characterization of the K-functionals given in [1, Th. 3.1] with translation of the 

singularity to - 1  and 1 where a = 1/2. For this we recall the K-functionals 

K,(t',f), 

(3.2) K,( t ; f )= inf (ll llct_l,lj+ t'll(1- 
/1+/2=f 

where fl E C[ - 1,1] and f2 and its first r - 1 derivatives are locally absolutely 

continuous in ( -  1,1] and (1 - x2)'/2/~')(x) is continuous in [ -  1,1]. (It would not 

make any difference if'we just assume (1 - x2)'/2ft2~)(x) is in L~ .) With the above 

setting [1, Th. 3.1] will yield: 

THEOREM A. Suppose f E C[ - 1,1], then 

(3.3) M~to *,(/,t) <= K,(t',f) <= M2to'~(/,t) 

where to*,(/,) and K,(t',f) are given in (1.3) and (3.2) respectively. 
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We will need for Theorem 3.2 as well as some subsequent theorems two 

properties of to*if, h)given in the following lemma: 

LEMMA 3.2. For to*,ff, h) given in (1.3) we have 

. 4  r h \ to*(f,h)<=2to*_, t ,5 .~_  1 / ( f o rh<l /2 ( r -1 ) )  (3.4) 

and 

(3.5) to *~ if, 2 h )  -< M(r)to *if, h) 

where M(r) is independent of f and h. 

REMARK. While it is obvious that M(r)>-_ 2 r, M(r) may be actually bigger 

than 2'. 

PROOF OF LEMMA 3.2. To prove (3.4) we observe that 

to*if, h) -= sup IAT,~x~f(x)l; x--~tv(x),x + tv(x) c [ - 1 , 1 ]  
O < t < h  

{I ,( ' ,tr I ,tl < sup Amx ~ x + ~ 7 ( x  + A,,~ x -  7(x ; 
O < / < h  

[ x - 2 t T ( x ) , x + 2 t T ( x ) ] C [ - 1 , 1 ]  }. 

For ~ = x +- t3,(x )/2 and - 1 + rtT(x )/2 < x <= 1 - rty(x )/2 we have 

1 - ¢:_-<7-~_~ 1(1 - x2). 

This follows, easily for - 1 < x < ½ (at least for t < 1/2(r - 1)). For x such that 

x =>½ we have ¢._- x +-ty(x)/2 and trivially 1 -  ~2__< 1 -  x 2. We now write 

: - ---L--r x) 4--L-r (1 
(1 - ~ + ) -  (1 - ~+) (1  + ~+) =< r _ 1 ( 1  - x ) ( 1  + ~+)_-< 2 ~ _ r  1 (1  - _-< 3 r - 1 - x2)" 

Similarly, we treat x -< - 1/2, which now implies (3.4). We now use the definition 

of K,(tr, f) and the fact that we have K,((2t)',f)<-_ 2"K,(t',f), which we combine 

with (3.3) to achieve the estimate 

2' < M E , ,  . 
to ,ff ,2t)  = K,((2t)',f) < --~zK,(t , f)  = --~2 to ,if, t), 

and that is (3.5) with M(r)= (MJMI)2". 
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The  following L e m m a  will be the crucial step in proving T h e o r e m  3.1. 

LEMMA 3.3. Suppose for some odd r, g . . . . .  g,-1) are locally absolutely continu- 
ous in ( -  1,1), g"'(x) continuous in ( -  1,1) and II(1 - x2)'2g"'(x)llcC_Lll <- M, 

then there exists a polynomial Pn(x) such that ] ] g - P n  IIc~-LIJ <-- MLn -r where L 
depends only on r. 

REMARK. The  lemma is valid for  even r as well, and this will be proved later 

because for this we will use T h e o r e m  3.1 and in the proof  of T h e o r e m  3.1 we 

need our  lemma at least for odd r. 

PROOF OF LEMMA 3.3. We may assume that  the g(0) = g'(0) . . . . .  gCr-l)(o) = 
0; otherwise we just consider  g~(x) = g ( x ) -  Q,_~(x) where  Q,-1 is a polynomial  

of order  r -  1, g~')(x)= g~)(x) and g]')(0) = 0 for 0 = < i <  r. We have 

g~r-')(x ) = rio ~ g"}(u )du 

which implies for  r --- 3 

Similarly, for  i < r/2, 

and for i > r/2 (r >= 1), 

fo Ixl du and ]g"-'(x)l<=M (1_u2),2, 

(1 - x2) ~-2~/2 ] g'~-l)(x)l =< MR1. 

(1 - x2)(r-2°/2[ g('- ')(x)[ < MR,, 

I g(r-')(x)l <= MR,. 

As r is odd,  i = r/2 is not  possible. In fact, the reason for assuming r odd is that 

otherwise we would get for  i = r/2 a term with logarithmic behaviour  which 

would interfere  in our  estimates.  We now define F(t) - g(cos t) for  0 =< t =< 7r. 

The  derivatives of F in (0, ~-) are: 

F'(t) = - sin tg'(cos t), F"(t) = sin 2 tg"(cos t) - cos tg'(cos t), 

F~3)(t) = - sin 3 tg°)(cos t) + 3 sin t cos tg"(cos t) + sin tg'(cos t), 

etc. In general  we have 
2 1 - 1  

F~2'-°(t) = ~ qb2,-i,,(t)g¢2'-i)(cos t) 
/'=l'= 

and 
21--1 

F~2')( t ) = j~= $2,-j,,( t )g~2'-J)(cos t ). 
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While q~2,-1,t(t)= ( - s i n t )  2'-1, ~bl,,(t)= ---sint, ~b2u(t)= (sint) 2' and i~1,/(/)= 

- c o s  t, the exact expressions of qbj, t and $j,t are quite complicated. We can, 

however, see that the lowest power of sint in ~b2H-j,t(t) and $2~-j,~(t) is 
(sin t) 2~-1-2j and (sin t) 2t-2j for 2l - 1 - 2j > 0 and 21 - 2j => 0 respectively. There- 

fore, 

I~b2,_~_,,,(t)l =< C(/) ls int[  2'-'-~' and [ ~bj.,(t)l < C(/)[sin t l 2I-2j 

for those j. It is easy to observe that for other j, I @j.,(t)J --< C(l). More important 

is the observation that for 21 - 1 - 2j < 0, 14,2,-1-j., (t)l --< C(/)[sin t l. (For other 
j 's  we showed a better estimate.) This follows the fact that ~b2~-l-j.~(t) is 

composed of elements of the type sin t. T(t) for some trigonometric polynomial 

T(t) and elements of the type 

I ( t ) =  ( d ) ~ r {  (sin/), ,  ( d )  ~,-, { (sin/)~ ' . . . . .  (~tt)  ~' (sin t)m' } " "  } 

where Y~k~ + Z m i  is 2 1 - 1 ,  i.e. odd. (We also know that rex=> 1 and that 

m, = 21 - j - 1 and E k~ = j, but that latter information would not add anything 

there.) As a power series, I(t) is odd or even with E k~ + E m, and therefore odd, 

but I(t) is a combination of powers of sin t and cos t and therefore, using also the 

same argument at (t - 7r), a multiple of sin t. 

We examine the function F(t) and its derivatives. As 

( 1  - x V'-=')'=l g'r-')(x )l <= MR,, 

F(')(t) is bounded in (0, 7r) and so are FU)(t) for j < r. Moreover, for an odd 
number 21 - 1, 21 - 1 < r we will show F(2t-1)(0 + ) = F(2t-1)('n" - ) = 0. For terms 

qb2t_j_~(t)g(ZH-i)(cos t) where 21 - 1 - 2j > 0, we have, using 
[(sin/)'-2Jg('-J)(cos t)l --< MRj, 

[(sin t)2'-'-2'g(2'-~-J)(x)l = [(sin t)'-2('-2'+~)-2'g('-('-2'+')-')(x)l [sin t l '-~'+~ 

MR,-2t+l+i I sin t l'-:'+L 

For terms ~b2~_j_l(t)g(2H-i)(cos t) where 21 - 1 - 2j < 0, 

f o r / = ( r - 2 l + l ) + j ;  

since 

/ 1,+(j 21-1)2 
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we recall that the coefficient of g~2~-'-'(cost) in that case was bounded by 

C l sin t[ and therefore I < K lsin t l. For this reason F(t) can be 

defined on [ - T  r, ~-] as a periodic function by F ( - t ) =  F(t)  which preserves 

derivatives in both edges of the interval [0, rr) (as the same argument is valid for 

rr). We can find a trigonometric polynomial T,(t)  such that 

l iE( t ) -  To(t)llct . . . .  ~ < CllF(*)lln-" 

Moreover, since F( t )=  F ( - t ) ,  we can choose Tn(t) as an even trigonometric 

polynomial (the De la Vallee Poussin operator 

V o, j(F, t) = 2o- ln,2 (F, t ) -   r ,21(F, t) 

would be such a choice). The even trigonometric polynomial T~ (t) can be written 

as P~(cost), a polynomial in cost. We complete the proof of the lemma by 

recalling that 

II F(')( t)llc[0,~, --< B (r)II (1 - x 2)'/2g(')(x) II.-,.1,. 

PROOF OF THEOREM 3.1. Using Lemma 3.2 it will be sufficient to prove (3.1) 

for odd r (and in fact for any subsequence of the integers). While it is puzzling to 
me, it is nevertheless easier in the proof of Lemma 3.3 to assume that r is odd. 

With the aid of Lemma 3.3, we now choose fl,, and f2,, such that 

2 r/2 (r) < -r  Ilf .o Ilct-,.,  ÷ n - '  [l(1 - x ) = 2Kr(n ,f). 

We now choose the polynomial P. to fit g = f2,,(x) in Lemma 3.3; the constant 

M for that g will be 2n'K,(n- ' , f ) ,  and therefore 

Ill - P, II -< IIf,,o II + II f2,, - P, II ~- 2g,(n-~,f)  + 2n 'g~(n-r,f)Ln -" 

< (2 + 2L)K, (n-',  f )  =< (2 + 2L)M2w *(f, l /n).  

4. Corollaries and extensions 

In this section we shall be able to extend Lemma 3.3 and Theorem 2.1 just by 

applying Theorem 3.1, to the particular situation. 

LEMMA 4.1. In Lemma 3.3 we may drop the condition that r is odd. 

PROOF. If I1(1 -- X2)mg'2m)(X)lh-,,,~ <---- M, we can show o~*,,+l(g,h) < M k .  h TM. 

This follows using the expansion of g by Taylor's formula with integral 
remainder involving the 2m derivative in the expression A,~"~,+)~g(x). Using 

Theorem 3.1, we obtain our result. 
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(4.1) 
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APPROXIMATION IN C[-  l, l] 351 

For P. ( x ) the best polynomial approximation in [ - 1,1] to f, we 

] P~)(x )t <= M(r) (A° (x))-rw * (f, 1/n ). 

Using Theorem 3.1, we have E,([)<- Co)*(f, 1/n). Using Lemma 3.2 
we have ~b(2k)_--< M(r)'-k4~(2 ') where ~b(n)= to*if, 1/n). Choosing s such that 
M(r)2 -r-~+l < 1 we have 

I I 

k~--o 2k(r+s)4~(2k)----< ~--0 2'(r+"2(k-l)[2(k-"(r+* "M'-k]4~(2')  

< 2 2'('+*)4~(2'). 

(For 4 ~ ( n ) -  n" where a _-< r or 4 ~ ( n ) -  n" logn ~ where  a _-< r, s = 1 is suffi- 

cient.) Therefore ,  using Theorem 2.1, we have 

(4.2) [ P~+*)(x )[ <= K(A,  (x )) . . . .  to *(f, 1/n ). 

To show that (4.1) is satisfied, we have to show that (4.2) for s = m + 1 implies 

(4.2) for s = m. We now write 

(r+~) = [A. . ) , °Po(x)I  = [Av(~) / . (P .  - f ) l  + IA . ,~ , , / (x ) l  

, <2 Ktorff'l/n)+to*'+"ff'l/n)<2""Kto* f' +2into*' f' - - 7 - - /  n 

< L(r)to * ( f, 1 )  

for some ~¢ satisfying x - (r + m)7(x) /2n  < ~ < x + (r + m)y(x) /2n.  We now 

write 

1, (so, x ) = I (  n -  ~ )r+"(P~+")(,)-P~+")(x)) l 

<= to *(f ,1/n)K 

For 1- lxI>=(r  + m)y(x) /n ,  

( ~nX ) r+rn ) 2-~n ( ~-~) ) .... 1 I, (~, x) <= K to *if, l /n <= Kto *(f, 1/n ) 
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and for l - I x  I f  (r + m)y(x)/n (or y(x)  < Cn 2), 

I,(~,x)<=K(~nX )'+mw *,(f, 1/n)~nX (n2y+m+l<=K~w*(f,1/n). 

Therefore 

I (~nX )r+"P~+m)(x)[ ~ Ka~o*(f, 1/n) 

and using the fact that we can interpolate the polynomial P~+") at the zeros of 

the Chebychev polynomial of order n - r - m as was done in [4, p. 41], we get 

[ P~+")(x )l <= M(A,(x ))-r-"w , ( f ,1)  . 

5. The inverse result for derivatives 

In this section we will show that in some sense Theorem 4.2 is best possible. 

THEOREM 5.1. Suppose P, (x ) is the polynomial of best approximation of degree 
n, IP~)(x)l =< M (•,(x )) r4)(n ) with &(n) = o(1), n---~, 4~(n ) decreasing, then if 
£(&(n)/n)<oo, oJ*(f,n-1)<=K~=~&(2kn), and if ~=lcb(2kn)<=L6(n), we 
have w*(f,n 1)~K~&(n). 

REMARK. Only for very slowly decreasing sequences ~b(n) do we have 

£(&(n)/n)= oo. For instance, 6 ( n ) =  n -~, a _-< r satisfies both conditions, and 

P~)(x)] _<- M(A,(x))-'n -~ implies w *(f,1/n)~ K,n -~ 

PROOF. Using IP~)(x)l<=M(A,(x))'d(n) we write ]]Pi.-P,(P~,)]]<= 
M.~b(2n) where P,(P2,) is the best n-th degree polynomial approximation to 

P2,. We observe that 

M ,  & (2n) > IIP2. - P. (P2.)H > Hf - P.(P~.)II- Ilf - P~. II => E . q ) -  E~. if). 

This implies 

The sum on the right is convergent if and only if Y~=~ (4(n)/n) is. Moreover, we 

can now write 

I A~,(~)/.0C(x))l = I A'~<~,/,(/(x)- p, (x))l + I A'~,~)/,P, (x)l 

_-<2'E.(/) I . (s¢)l 
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for some x - r y ( x ) / 2 n  < ~ < x  +ry(x) /2n.  Using Lemma 2.3, we have 

IP +"(x)l _-< C(A.(x))-'-%(n) and therefore 

which implies 

The second result of the theorem is useful but is just an immediate consequence 

of the first. 

6. Conclusions 

A simple version of our theorems for ~b(n)= n -~ can be summarized by the 

following corollary: 

COROLLARY 6.1. 

IIf- Po II, then 
(a) for a < r 

I P(;)(x )l <= C(±. (x )) r n  a 

(b) for a < r 

E . ( f ) ~  Cn -~ 

Suppose E . ( f ) =  info~.[[f  - 011 and P. satisfies E . ( f ) =  

if and only if w *(f, 1/n) <= A n  ~ ; 

if and only if oJ *(f, 1/n ) < A n - L  

REMARK. In particular, IP~)(x)l<= C(A,(x)) rn-' is equivalent to 

w*([,1/n)<=An -' and E,([)<=Cn -" is equivalent to w*+,([,1/n)<=An ". The 

above provide an explanation for the result of Hasson [2, Th. 4.1], that there 

exists a function for which E,([)<=A/n and HP'(x)llct_,+e,~_,l>-_Klogn. We 

remember that w*+df, 1/n) <= A n  " implies oJ*~, 1/n) <-_ A ,n -"  log n and that is 

the best estimate for some functions, even on ( - 1 + 6 , 1 - 3 ) .  For ~b(n)= 

n- ' logn  we have by Theorem 4.2 and 5.1 o~*(f, 1 / n ) - A l n - ~ l o g n  is necessary 

and sufficient to I P~)(x)[ < C(A,(x))- 'n  ' log n. 
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